59,532 research outputs found

    Multiphase induction motor drives - a technology status review

    Get PDF
    The area of multiphase variable-speed motor drives in general and multiphase induction motor drives in particular has experienced a substantial growth since the beginning of this century. Research has been conducted worldwide and numerous interesting developments have been reported in the literature. An attempt is made to provide a detailed overview of the current state-of-the-art in this area. The elaborated aspects include advantages of multiphase induction machines, modelling of multiphase induction machines, basic vector control and direct torque control schemes and PWM control of multiphase voltage source inverters. The authors also provide a detailed survey of the control strategies for five-phase and asymmetrical six-phase induction motor drives, as well as an overview of the approaches to the design of fault tolerant strategies for post-fault drive operation, and a discussion of multiphase multi-motor drives with single inverter supply. Experimental results, collected from various multiphase induction motor drive laboratory rigs, are also included to facilitate the understanding of the drive operatio

    Analysis and design of a two-speed single-phase induction motor with 2 and 18 pole special windings

    Get PDF
    The motor presented employs multiple independent windings for operation with two very different pole numbers. The 18-pole field is produced with a symmetrical three-phase winding connected in a Steinmetz arrangement to a single-phase supply. A unified analysis method has been developed and used to demonstrate the equivalence of a Steinmetz delta or star connection with a main and auxiliary winding of a single-phase motor. The method has been experimentally validated and also included are some specific motor design considerations

    Torque behavior of one-phase permanent magnet AC motor

    Get PDF
    This paper presents a detailed comparative study of two starting and running methods for a single-phase permanent magnet synchronous motor, equipped with a squirrel-cage rotor. The analysis of the motor performance is realized for a pulse width modulated (PWM) inverter fed motor and for a capacitor-start, capacitor-run motor. The developed approach may be extended to any 1-phase ac motor—induction, synchronous reluctance or synchronous permanent magnet

    Revolving-field polygon technique for performance prediction of single-phase induction motors

    Get PDF
    This paper presents a new analytical technique for improving the performance prediction of single-phase induction motors, especially capacitor motors. The technique uses the split-phase motor electrical equivalent circuit analysis together with electrical and magnetic parameters whose variation is computed from the equivalent balanced polyphase motor, so that the same magnetic circuit analysis can be used for both. (The term split-phase is used to cover motors operating from a single-phase supply but with the phase windings split into two orthogonal windings, one of which may have a capacitor in series with it during running or starting.) The technique accounts for the elliptical envelope of the magnetizing field vector and results in improved precision, since the three-phase electromagnetic model is considered to be more precise than the normal split-phase motor analysis. An important result is the computation of vector polygons of flux density for each section of the magnetic circuit, providing a better basis for core loss prediction. The double-frequency torque ripple is also obtained from the stator magnetomotive force and flux-density polygons. Three different electrical equivalent circuit methods for the split-phase motor (based respectively on the cross-field theory, forward- and backward-revolving fields, and symmetrical components) are evaluated to determine the method best suited for incorporating the variation of the circuit parameters from the polyphase magnetic circuit analysis, and it is discussed how the core losses can be included in these circuits to obtain the best overall performance prediction

    Fast Method for the Iron Losses Prediction in Inverter Fed Induction Motors

    Get PDF
    In this paper an easy method for the iron loss prediction in PWM inverter fed induction motors is presented. The method was initially proposed and validated for the prediction of the iron losses in non-oriented soft magnetic material with PWM supply. Starting from the iron losses measured with sinusoidal supply and the PWM waveform characteristics, a fast and reliable prediction of the iron losses in the motor can be obtained too. The method requires the separation of the iron losses in the hysteresis and eddy current components with sinusoidal supply, plus the average rectified and RMS values of the applied PWM voltage. The proposed method has been proved on an induction motor prototype able to provide a good accuracy in the iron losses measurement. The comparison between the measured and predicted iron losses with PWM supply have shown an excellent agreement with an error lower then the 5%, confirming the method validit

    Specificity and coherence of body representations

    Get PDF
    Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    Line-start permanent-magnet motor single-phase steady-state performance analysis

    Get PDF
    This paper describes an efficient calculating procedure for the steady-state operation of a single-phase line-start capacitor-run permanent-magnet motor. This class of motor is beginning to be applied in hermetic refrigerator compressors as a high-efficiency alternative to either a plain induction motor or a full inverter-fed drive. The calculation relies on a combination of reference-frame transformations including symmetrical components to cope with imbalance, and dq axes to cope with saliency. Computed results are compared with test data. The agreement is generally good, especially in describing the general properties of the motor. However, it is shown that certain important effects are beyond the limit of simple circuit analysis and require a more complex numerical analysis method
    corecore